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Abstract
The concept of complementary media, which cause negative refraction and
make perfect lenses, was first introduced to electromagnetic waves. This
paper extends it to general waves by expressing the complementarity in terms
of a transfer matrix. As an example, complementary media of electrons
are discussed theoretically. An application of complementary media to
subsurface imaging by scanning tunnelling microscopy is described. For
realistic materials the formulation of complementary media is extended to take
account of the scattering at interfaces, and effectively complementary systems
formed by interfaces are discussed. Interfaces of the graphitic lattice forming
complementary systems are designed.

1. Introduction

Pendry and Ramakrishna introduced the concept of complementary media to electromagnetic
waves [1]. A complementary medium is a material with permittivity εc = −ε and permeability
µc = −µ, where ε and µ are the permittivity and permeability of an original medium.
Electromagnetic fields including evanescent waves have mirror symmetry with respect to the
interface plane of original and complementary media. A complete image of an object in an
original medium is produced in a complementary medium beyond the diffraction limit of
wavelength. Complementary media reproduce the information of amplitude and phase of waves
in original media. This property is an origin of negative refraction [2] and perfect lenses [3, 4].
A simple derivation of the complementarity of electromagnetic waves was given by Ruppin [5].
The concept of complementary media has been extended to non-planar geometries [1].

Another viewpoint of complementary media is that a complementary medium completely
cancels the evolution of waves in passing through an original medium with an equal thickness.
A pair of original and complementary media acts as a space with no thickness, like the pair
annihilation of matter and antimatter. This property will be clear when the complementarity is
expressed using a transfer matrix. Section 2 presents a formulation of complementary media in
terms of a transfer matrix, which is applicable to any wave. Using this formulation we discuss
complementary media of electrons in this paper. An application of complementary media
is the improvement of resolution in subsurface imaging by scanning tunnelling microscopy.
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Ideal examples of application are described in section 3. In realistic materials atomic
structures of interfaces are important in the transmission across interfaces. This means that
the complementary property is determined not only by the transport properties in media but
also by the scattering properties at interfaces. A formulation of complementary media taking
account of scattering at interfaces is presented in section 4, which enables us to form effectively
complementary systems by tuning the atomic structures of interfaces. Section 5 presents
interface structures forming complementary systems designed for the graphitic lattice and
demonstrates their complementarity by numerical simulations.

2. Complementary media

Let us start by illustrating the complementarity of electromagnetic waves in terms of a transfer
matrix. First we consider homogenous media for simplicity. The Maxwell equations for a
monochromatic wave with frequency ω in a medium with permittivity ε and permeability µ are
written as

dEx

dz
= iωµHy (1)

dHy

dz
= iωεEx (2)

where we choose x , y and z axes for the directions of electrical field E, magnetic field H and
wave propagation, respectively. These equations are rewritten in a matrix form as

1

i

dC
dz

= K C (3)

where

C =
(

Ex

Hy

)
(4)

and

K =
(

0 ωµ

ωε 0

)
. (5)

When the fields at z = z1 are given, the fields at z = z2 are obtained from

C(z2) = T (z2, z1)C(z1) (6)

using a transfer matrix T (z2, z1). The transfer matrix for a homogeneous medium is calculated
as

T (z2, z1) = eiK (z2−z1). (7)

Since K is transformed to −K under the complementary transformation of ε → −ε and
µ → −µ, the transfer matrix for the complementary medium is given by

Tc(z2, z1) = e−iK (z2−z1). (8)

Therefore we obtain a complementary relation of the transfer matrices as

Tc(z2, zm)T (zm, z1) = 1 (9)

when zm = (z1 + z2)/2. Complementary media can be defined as media having a transfer
matrix which is the inverse of the transfer matrix of the original media. This is satisfied if
Kc = −K , where Kc is the matrix of complementary media corresponding to K when the
wave equations are written in the form of equation (3).
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It can be proved that the complementary relation of the transfer matrices is preserved for
electromagnetic fields in inhomogeneous and three-dimensional media as shown in appendix A.
Equation (3) has the same form as the time-dependent Schrödinger equation. If we regard the z
coordinate as time, complementary media may be considered to be time-reversal materials. The
difference from the Schrödinger equation is that K is not necessarily Hermitian, and K may
have complex eigenvalues. When the eigenvalues of K are real, waves are propagating. When
they are complex, waves are evanescent. The non-Hermitian property enables the amplification
of evanescent waves. Matrix K may be regarded as a wavenumber matrix.

It is easy to apply the formalism above to an electronic wavefunction φ. We define χ by

χ = v̂φ = 1

m

h̄

i

dφ

dz
(10)

where v̂ is velocity operator. Using a vector defined by

� =
(

φ

χ

)
(11)

the Schrödinger equation is written as

1

i

d�

dz
= K� (12)

where

K =
(

0 m/h̄
2(E − V )/h̄ 0

)
. (13)

In the above E and V are energy and potential. It is obvious that the mass mc and potential Vc

of a complementary medium are given by mc = −m and Vc = 2E − V . The conditions for
complementary media are the same in the homogeneous three-dimensional case. This can be
shown by replacing E −V with E −V −h̄2q2/(2m) in equation (13), where q is the momentum
perpendicular to z axis. More generally, when mc = −m and V (x, y, z−z0)+Vc(x, y,−z+z0)

is constant, it is a complementary medium where z = z0 is the interface of the original and
complementary media.

A complementary medium of electrons works at a fixed energy. This is in contrast to the
case of electromagnetic waves, where a complementary medium works at any frequency if the
permittivity and permeability do not depend on frequency. However, since the permittivity
and permeability of real materials are inevitably dispersive and take negative values in limited
ranges of frequency, a complementary medium of electromagnetic waves also works in limited
ranges of frequency [4]. We may regard a material as a complementary medium when the
conditions for complementary media are satisfied at a fixed energy or frequency.

A more general definition of complementary media is given by

Tc(zc, 0)T (0, z) = 1 (14)

or

Tc(zc, 0) = T (z, 0) (15)

where we choose the interface plane of the original and complementary media at z = 0. zc is a
function of z. If the wavenumber matrix Kc for complementary media is defined by

1

i

∂Tc

∂zc
= KcTc, (16)

we obtain

Kc =
(

dz

dzc

)
K . (17)
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When dzc/dz = −1, Kc = −K . However, complementary media are not restricted only to this
case. Equation (17) expands the class of complementary media. We present such an example
in the following.

We consider again a homogeneous medium, but the case with an anisotropic mass as

E = h̄k2

2m⊥
+ h̄q2

2m‖
+ V . (18)

In this case the conditions for complementary media are given by

zc

z
= −

√
m⊥
mc⊥

mc‖
m‖

, (19)

E = V m‖ − Vcmc‖
m‖ − mc‖

(20)

and

m⊥m‖ = mc⊥mc‖ (21)

with m⊥mc⊥ < 0. The first and second conditions are derived from the phase conservation and
the last one is from the velocity conservation as shown in appendix B. Here we mean that phase
is the product of eigenvalues of matrix K multiplied by position coordinates and velocity is the
eigenvalues divided by the (1, 2) element of K .

For isotropic materials, equation (21) is equivalent to m = −mc. But for anisotropic
materials the conditions m⊥ = −mc⊥ and m‖ = −mc‖ are lifted if the focal distance and
energy are chosen as in equations (19) and (20). For example, the case with m⊥ = −mc‖
and m‖ = −mc⊥ with m⊥m‖ < 0 satisfies the complementary condition. In this case
zc/z = −|m⊥/m‖|. This situation may be realized in anisotropic two-dimensional systems
if two identical anisotropic materials are jointed on a line with rotated by 90◦ each other.

The discussion presented above is a simple one, in which we implicitly assumed that the
fields conveyed by a transfer matrix are continuous across the interfaces of the original and
complementary media. In discussing complementary media of realistic materials it is necessary
to generalize the definition of the complementary media with taking account of the scattering
caused by the atomic structures of the interfaces. This will be presented in section 4. Before the
discussion on the connection of fields at interfaces we present an application of complementary
media to subsurface imaging in the next section.

3. Subsurface imaging using complementary media

An application of complementary media is the improvement of subsurface imaging by scanning
tunnelling microscopy (STM). STM is a method for studying topography and electronic states
of solid surfaces on atomic scales. The information obtained by STM is usually that of
the outermost layers of surfaces. However, there are some experimental images showing
information of subsurface structures. For example, long-period structures like moiré patterns
appear in the images of layered materials [6] and the images of bulk impurities buried in
semiconductor surfaces are observed [7–11]. A theory on the mechanism of observation of
subsurface structures in STM has been presented [12], in which it is essential that the short-
wavelength waves on atomic scales parallel to surfaces are evanescent waves in materials and
the long-wavelength waves on nanometre scales are propagating ones. The former waves of the
outermost layers are observed in STM as atomic-scale corrugation and the latter ones produced
by subsurface irregularities appear as long-wavelength structures. According to this theory the
resolution of the images of subsurface structures is limited by the wavelengths of propagating
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Figure 1. Schematic diagram of subsurface imaging using complementary media. Impurity A
buried at depth d1 and hindered by obstacle B is seen at depth d1 − l indicated by the dotted circle
when a complementary medium with thickness l with an anti-obstacle B∗ is laid on the surface.

(This figure is in colour only in the electronic version)

waves and the amplitude of subsurface images decreases accompanied with oscillation as the
depth of the subsurface structures increases. However, it may be possible to improve the
resolution by using complementary media. We present two ideal examples below.

The first example is a simple one. We consider impurity A buried at depth d1 in a surface.
When a complementary medium with thickness l is laid on the surface, the image of the
impurity is seen as if it is buried at shallower depth d1 − l.

The second example is the case that impurity A is hindered to be seen behind obstacle B
buried at depth d2, as shown schematically in figure 1. In this case interference between A and
B may provide information about impurity A without a complementary medium. But the pure
image of impurity A is directly observed at depth d1 − l if the complementary medium with
thickness l is laid on the surface and anti-obstacle B∗ is buried in the complementary medium
symmetrically with respect to the interface of the original and complementary media.

In order to demonstrate some feasibility of these ideas we simulate the images
of subsurface impurities with and without complementary media using realistic material
parameters. Figure 2 shows simulated images of subsurface impurities corresponding to the
two examples. The method of calculations is the same as that in [13]. We use a screened
Coulomb potential

V (r) = f0
e−µr

r
(22)

for the impurity potential. We choose 0.066 and 0.0529 au for f0 and µ, respectively, where au
is atomic units (me = h̄ = e = 1). We assume that the potential in the surface is constant.
The potential and Fermi energies are −0.150 5445 and −0.15 au measured from the vacuum
level, respectively. These parameters are chosen to reproduce the STM images of Si impurities
in GaAs(110) surfaces [10]. Details of the choice of parameters are given in [13]. STM images
are simulated using the local density of states of surfaces at a tip [14]. The height of the images
is expressed in the logarithmic scale as ln[ρ(r‖)/ρ(∞)], where ρ(r‖) is the local density of
states at distance r‖ from the centre of the images of impurities. The images are simulated in the
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d = 30
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d = 120
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Figure 2. Simulated images of subsurface impurities. The horizontal axis shows the coordinates
parallel to the surface. The vertical axis shows the logarithm of local density of states normalized
by that at a distance of 200 au from the centres of the images of impurities. The dotted lines show
the images of single impurities buried at depth d (au). (a) The solid line shows the image of a single
impurity buried at a depth of 60 au when the surface is covered with a complementary slab with
a thickness of 30 au. (b) The broken line shows the image of double impurities buried at depths
of 50 and 120 au. The solid line shows the image of double impurities buried at depths of 50 and
120 au when the surface is covered with a complementary slab with a thickness of 90 au and an
anti-impurity corresponding to the impurity at 50 au is buried in the complementary slab.

constant-height mode. The local density of states is calculated on a plane in the vacuum region
10 au distant from the surface. ρ(∞) is approximated by the value at a position sufficiently
distant from the centre of the impurity images.

Figure 2(a) shows images of single impurities. The dotted lines show the images of
impurities without a complementary medium. The amplitude of the images decreases with
increasing the depth of impurities. The origin of the oscillation in the images is the interference
of the standing waves formed by the vacuum barrier and the scattered waves by impurities [13].
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The solid line shows an image of an impurity buried at a depth of 60 au in a surface which is
covered with a complementary medium with a thickness of 30 au. The impurity is buried at
a depth of 90 au in total from the top of the complementary medium, but the image is almost
the same as that of the impurity at a depth of 30 au without a complementary medium. The
incompleteness in reproduction is ascribed to numerical inaccuracy.

Figure 2(b) shows the images of impurities corresponding to the case in figure 1. The
dotted lines show the images of single impurities without a complementary medium. The
amplitude of the image of the impurity at a depth of 120 au is very small. The image of
double impurities at depths of 50 and 120 au shown by the broken line is similar to the image
of a single impurity at a depth of 50 au, and it is hard to obtain any information about the
impurity at 120 au. However, when a complementary medium with a thickness of 90 au is
laid on the surface and an anti-impurity corresponding to the impurity at 50 au is buried in
the complementary medium symmetrically with respect to the interface of the surface and the
complementary medium, the image of the impurity at 120 au is distinctly visible as if it is
buried at a depth of 30 au from the top of the complementary medium, as shown by the solid
line.

These examples require ideal situations and may be difficult to be realized in the strict
way. But it may be possible to improve the resolution of subsurface imaging by making use of
complementary media.

4. Complementary systems of realistic materials

The wavelength of an electron in materials is as short as atomic distances. This is true even
in semiconductors, where the wavelength of envelope functions is usually much longer than
atomic scales. The connection condition of wavefunctions of two media depends on the atomic
structures of the interface. In this point electrons are different from electromagnetic waves
with wavelength of light or microwaves and on the one hand this makes it difficult to realize
complementary media of electrons. However, on the other hand this produces the possibility of
realizing effectively complementary systems by tuning the interface structures. An example is
presented in the next section. This section presents a formal discussion.

The connection of wavefunctions of, for example, one-dimensional systems is determined
by two conditions. For bare wavefunctions the wavefunction and the first derivative are
continuous across an interface. The connection conditions of envelope functions at an interface
of two semiconductors A and B are expressed by a 2 × 2 matrix TI [15, 16] given by(

φB(0)

χB(0)

)
= TI

(
φA(0)

χA(0)

)
(23)

where φi (x) and χi(x) are a wavefunction of semiconductor i and a function multiplied by the
velocity operator defined in equation (10), respectively. The position of the interface is x = 0.
The current conservation across interfaces leads to a relation

T †
I

(
0 1
1 0

)
TI =

(
0 1
1 0

)
. (24)

This does not necessarily mean that TI is a unit matrix.
The interface matrix has been calculated for various types of semiconductor

heterointerfaces using a tight-binding model and an empirical pseudopotential model [16]. The
calculation shows that the current conservation holds fairly well. The form of the interface
matrix depends on the type of connection of energy bands. The interface matrix is diagonal
in the cases of connecting conduction bands and connecting light-hole valence bands at the
GaAs/Alx Ga1−x As interface. The diagonal elements of the interface matrix are zero in the case
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of connecting the valence and conduction bands at the GaSb/InAs interface. In this case the
envelope function and the first derivative are interchanged at the interface.

It is theoretically predicted that negative refraction of ballistic electrons may occur at twin
boundaries of uniaxial semiconductors [17]. In this theory the continuity of wavefunctions
and current is assumed in connecting envelope functions at interfaces, which corresponds to
the interface matrix being unity. The negative refraction at twin boundaries has an advantage
that the refraction is always reflectionless at any energy. But it is not a complementary system
because both positive and negative refraction take place at fixed energy depending on the angle
of incidence.

When the interface matrix TI is not unity or more generally non-commutative with the
transfer matrix, the condition for complementary media in equation (14) is modified to

Tc(zc, 0)TI T (0, z) = TI . (25)

The right-hand side of the equation is not unity, because the left-hand side is TI for z = 0. The
complementarity condition on wavenumber matrix Kc in equation (17) is also modified to

Kc =
(

dz

dzc

)
TI K T −1

I . (26)

A simple example is that Kc = K when

TI =
(

1 0
0 −1

)
, (27)

dz/dzc = −1 and K is given by equation (13). This result means that a complementary system
can be formed only by tuning the transmission properties through an interface.

When the interface matrix has a form of

TI =
(

0 a
1/a∗ 0

)
(28)

and K given by equation (13) is written as

K =
(

0 p
q 0

)
, (29)

Kc is calculated as

Kc = dz

dzc

(
0 q|a|2

p/|a|2 0

)
. (30)

The phase conservation, i.e. the conservation of eigenvalues of K multiplied by position
coordinates, is

pcqc =
(

dz

dzc

)2

pq (31)

which is the same as the case that TI is unity. But the velocity conservation is

|a|4v2v2
c = 1 (32)

where v2 = q/p and v2
c = qc/pc. This equation has solutions of

E = V + Vc

2
±

√(
V − Vc

2

)2

+ mmc

4|a|4 . (33)

The conditions of complementary systems are satisfied only when

mmc > −|a|4(V − Vc)
2. (34)
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Figure 3. Atomic structure (a) and Brillouin zone (b) of two-dimensional graphite.

In the multi-dimensional cases there is no solution satisfying the conditions of complementary
systems for arbitrary wavevector parallel to the interface. However, this conclusion is applied
only to electron bands with quadratic dispersions. When the electron bands have non-quadratic
dispersions, different conclusions may be drawn. An example is found in the two-dimensional
graphitic lattice, where electron bands have massless dispersions. We present the interfaces
forming complementary systems of the graphitic lattice in the next section.

5. Complementary systems of the graphitic lattice

We consider transmission through interfaces of graphitic lattices. Figure 3 shows the atomic
structure and Brillouin zone of two-dimensional graphite. A unit cell of two-dimensional
graphite contains two kinds of carbon atom, labelled A and B. The electronic states near the
Fermi energy are expressed by a linear combination of π orbitals of carbon atoms. The two π

bands touch at two points, labelled K and K′ in the Brillouin zone, which are the positions of
the Fermi energy [18]. The energy dispersions nearby points K and K′ are approximately linear
like light, and have an electron–hole symmetry. Due to the massless dispersions the discussions
for free electrons in sections 2 and 4 are not applicable. We seek complementary systems of
the graphitic lattice in the following way.

First we consider the effective-mass equation of the graphitic lattice [19, 20] given by


0 γ (−ik̂x + k̂y) 0 0
γ (ik̂x + k̂y) 0 0 0

0 0 0 γ (−ik̂x − k̂y)

0 0 γ (ik̂x − k̂y) 0







FK
A

FK
B

FK′
A

FK′
B


 = E




FK
A

FK
B

FK′
A

FK′
B


 (35)

where γ = (
√

3/2)atppπ , k̂x = 1
i

∂
∂x and k̂y = 1

i
∂
∂y . a and tppπ are the lattice constant of

graphite and the transfer energy between π orbitals. FK
A is an envelope function of the A

sublattice expressing a state near point K, and so on. The origin of energy is that of points
K and K′. The effective-mass approximation is valid only for waves with wavelengths much
longer than the lattice constant.

When we assume a plane wave with wavenumber ky for the y direction, the effective-mass
equation is written as

d

dx




FK
A

FK
B

FK′
A

FK′
B


 =




−ky E/γ 0 0
−E/γ ky 0 0

0 0 ky E/γ

0 0 −E/γ −ky







FK
A

FK
B

FK′
A

FK′
B


 . (36)

It is clear that if there is an interface interchanging the A and B sublattices of graphite but
keeping the waves at K and K′, it is an interface forming a complementary system.
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When we assume a plane wave with wavenumber kx for the x direction, the effective-mass
equation is written as

1

i

d

dy




FK
A

FK
B

FK′
A

FK′
B


 =




−ikx E/γ 0 0
E/γ ikx 0 0

0 0 ikx −E/γ

0 0 −E/γ −ikx







FK
A

FK
B

FK′
A

FK′
B


 . (37)

Therefore if there is an interface that interchanges the waves at K and K′, keeping the A and
B sublattices, it produces a complementary system. It is possible to prove that there are only
these two cases that form complementary systems, as shown in appendix C.

We design the atomic structures of interfaces corresponding to these two cases by inserting
one-dimensional structures consisting of polygons into the hexagonal graphitic lattice. In
designing, we consider only the interface structures consisting of only even-member rings in
order to maintain the electron–hole symmetry. The tight-binding equations of the graphitic
lattice with nearest-neighbour interaction are given by

Eai = −tppπ

∑
j

b j (38)

and

Ebi = −tppπ

∑
j

a j (39)

where ai and b j are coefficients of the atomic orbitals at the i th and j th sites of sublattices A
and B, respectively. The summation is taken over three nearest-neighbour atoms. In the above
we neglect the overlap integral between π orbitals. The electron–hole symmetry is evident
from the transformation of ai → ai and bi → −bi . Therefore, to preserve the electron–hole
symmetry, the A and B sublattices should be well-defined, which means that odd-member rings
are unacceptable to interface structures.

The reason for keeping the electron–hole symmetry is as follows. The Fermi surfaces of the
two-dimensional graphite are points at K and K′ and most of the states are evanescent waves
near the Fermi energy. Therefore interface-state bands must exist to form a complementary
system. If an interface-state band exists and has a point with energy E = 0 in the Brillouin
zone, it should be a dispersionless band at E = 0 in two-channel systems due to the electron–
hole symmetry. The other channel is an anti-interface state. Here we mean by anti-interface
state such a state that the wavefunction increases exponentially on both sides of an interface
with increasing the distance from the interface. These properties are conditions favourable for
complementary systems. Therefore it is also desirable that there are only two channels in the
systems. This means that the unit cell of the direction parallel to the interfaces should be the
same size as that of the graphitic lattice.

Figure 4 shows two examples of atomic structures satisfying the requirements above. One
is an interface of zigzag edges of graphitic lattices and the other is an interface of armchair
edges, where the terms of zigzag and armchair edges are as used in defining the types of carbon
nanotube [21]. The interfaces consist of sites having only two π bonds. Here we do not discuss
how the sites with two π bonds are realized but proceed to calculations of the electronic states
and transport properties of these interfaces. Some suggestions on realistic structures will be
presented at the end of this section.

These interfaces change all decaying waves to growing waves and vice versa at energy
E = 0 in the full range of the Brillouin zone. The details of the tight-binding calculations
are given in appendices D and E. One deviation from perfect complementary systems is
the difference by π between the phases of the A and B sublattices after passing through the
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Figure 4. Interface structures forming complementary systems of the graphitic lattice. Closed
circles show sites with only two π bonds.
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Figure 5. Band structure of the interface in figure 4(a) calculated using a supercell.

interfaces. However, the difference in phase is compensated after passing through double
interfaces. Therefore these interfaces work as structures forming complementary systems.

Figure 5 shows a band structure of the interface in figure 4(a). The band structure is
calculated using a supercell in the direction perpendicular to the interface. The supercell
consists of 100 unit cells of the graphitic lattice and one interface atom. We choose 3.0 eV
for tppπ , because experimental and theoretical values range from 2.6 to 3.2 eV [22].

The regions filled with many lines are the continuum bands of two-dimensional graphite.
Outside of the continuum two kinds of interface state exist. One is a flat band at E = 0 and the
other is dispersive bands around ±4 eV. It is known that a Shockley-type surface state exists at
the zigzag edge of a graphitic lattice [23–25]. However, the surface state of the graphite edge
exists in only a restricted region of the Brillouin zone. The present interface state exists in the
full range of the Brillouin zone, which is a property necessary for forming a complementary
system.
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x (A)

y (A)

Figure 6. Current distribution in the graphitic lattice with double interfaces. Each interface structure
is that in figure 4(a). The dotted lines and closed circle show the positions of the interface lines and
the impurity site, respectively. The energy of scattering states is −0.1 eV. Current flows from left to
right.

In order to show directly the complementary property of the interface we calculate the
transmission across the interface. We consider a double-interface system in which a graphitic
lattice is separated into three regions (I, II, III) by double interfaces. Each interface structure is
that in figure 4(a). The distance between the centre lines of the two interfaces is 12.07 Å, which
corresponds to five unit cells of the graphitic lattice inserted between the two interfaces. All the
transfer energies between nearest-neighbour sites are the same. The onsite energy at only one
site in region I is shifted by +1.0 eV. We regard this site as an impurity. The distance between
the impurity site and the interface nearer to the impurity is 18.46 Å, which corresponds to the
site in the ninth unit cell of the graphitic lattice numbered from the interface.

We solve the wavefunctions of scattering states and calculate the current distribution. The
method of calculations is the same as that in [26]. We impose a periodic boundary condition
on the direction parallel to the interface lines. The size of the supercell is 305 unit cells of the
graphitic lattice, which corresponds to 750 Å in length. The current distribution is calculated
using only the states in which the Bloch wavenumber of the supercell parallel to the interface
lines is zero.

Figure 6 shows the current distribution. Current is incident on the double interface from
the side including the impurity site. The figure shows the distribution of the amount of currents
flowing to the nearest-neighbour sites in front of each site. The energy of the scattering states
is −0.1 eV measured from the Fermi energy of two-dimensional graphite. Though the unit
length in the y direction is 750 Å, only the region near the impurity is shown. The current is
large near the interfaces and in front of the impurity, which reflects the wavefunctions of the
interface states. The current distribution is approximately symmetrical with respect to both the
interface lines, which evidences the complementarity of the system.
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Figure 7. Images of impurities in graphitic lattices with (a) and without (b) double interfaces
forming a complementary system. Closed and open circles in (a) show the currents on lines
x = 14.20 and −9.94 Å in figure 6, respectively. Those circles in (b) are on lines x = 12.78
and x = −9.94 Å. Current is normalized by the average value over the y direction.

In order to confirm the complementary property more directly, images of the impurity
are shown in figure 7. The images are expressed by the currents on lines x = −9.94 and
14.20 Å in figure 6. The symmetrical line of x = −9.94 with respect to the interface on x = 0
is x = 9.94, which is also the symmetrical line of x = 14.20 with respect to the other interface
on x = 12.07. Therefore it is expected that the original image on x = −9.94 is reproduced
by the image on x = 14.20. For comparison, the images of the impurity in a perfect graphitic
lattice without the double interfaces are calculated and shown in figure 7(b). Since there is
no atom on line x = 14.20 in this structure, the image on line x = 12.78 which is nearer
to the impurity than x = 14.20 is shown instead. Though the image, for example, shown by
closed circles in figure 7(b) may look like a superposition of three images, it is a single image
consisting mainly of three components of waves.

The numerical result shows that the image after passing through the complementary region
almost reproduces the original image. We define corrugation by the maximum deviation from
the average value. In the case without the complementary region, the corrugation decreases
monotonically with the distance from the impurity. The corrugation amplitude on x = −9.94 is
reduced to that on x = 12.78 by a factor of 0.57. However, in the case with the complementary
region, the corrugation amplitudes on lines x = −9.94 and x = 14.20 are not much different.
On the contrary, it slightly increases by a factor of 1.13. The width of the impurity image
broadens without the complementary region as the distance from the impurity increases. But the
resolution of the impurity image with the complementary region does not much differ on lines
x = −9.94 and 14.20. The imperfection in reproduction originates from the slight deviation
in energy from zero, which is the only energy where the complementary condition is strictly
satisfied. We verified numerically that the reproducibility is improved as the energy approaches
zero. The numerical result shows that the complementary property is fairly good, even for
energy different by about 0.1 eV from that of the strict complementary condition.

The wavelength of propagating waves expressed by the envelope function is about 400 Å at
the energy of −0.1 eV. The widths of the images are narrower than this wavelength. Therefore
all the images in figure 7 consist of evanescent waves, which was confirmed by analysing the
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components of the wavefunctions. Since the wavelengths of the evanescent waves forming the
images are relatively long in the direction parallel to the surface, the decay of the evanescent
waves is relatively slow in the perpendicular direction.

We have not discussed the stability and the way of realization of the interface structures
presented in this section. The sites with two π bonds may be realized by attaching hydrogen
atoms to the carbon atoms constituting the interfaces. It is expected that the structure in
figure 4(b) is more difficult to be realized than that in figure 4(a) because of the jammed
structure. However, the tight structure may be loosened by adding chains into the interface
atoms. It can be shown that complementary systems are formed when all the chains of two-
bond sites connecting the two graphitic structures in the interface structures of figure 4 are
simultaneously lengthened with identical even numbers of two-bond sites.

In any case, real atomic structures are accompanied by reconstructions, and it would
be difficult to fabricate complementary systems in the strict sense. But as demonstrated in
the numerical calculations, the complementary property emerges even if the conditions for
complementary systems are not strictly satisfied. It may be realized to improve the resolution
of subsurface images by devising atomic structures of interfaces.

6. Conclusion

In this paper we have described the complementary media of electrons. First we presented a
formulation of complementary media in terms of a transfer matrix. We presented a definition of
complementary media that the transfer matrix of complementary media is the inverse matrix of
the transfer matrix of original media. This definition is applicable to any wave. We expressed
the condition of complementary media in terms of a wavenumber matrix, where the space-
reversal property of complementary media including evanescent waves is clear. Using the
expression in terms of the wavenumber matrix we obtained the conditions of complementary
media for free electrons. The definition of complementary media was generalized to the
cases without mirror symmetry, and we discussed the conditions of complementary media
for electrons with anisotropic effective mass, which are derived from the phase and velocity
conservations.

Second, we described an application of complementary media to subsurface imaging in
scanning tunnelling microscopy. We showed the possibility of imaging subsurface structures
beyond the wavelength limit of electrons by making use of complementary media. We
presented two ideal examples of imaging subsurface impurities. One is a simple subsurface
impurity and the other is an impurity hindered from imaging by an obstacle. We simulated the
impurity images for both cases and demonstrated the possibility of improving the resolution of
subsurface imaging by using complementary media.

The formulation of complementary media was extended to take account of the scattering
at interfaces. The reason for this extension is that the wavelength of electrons in materials is
the same order as the atomic distances, and the atomic structures of interfaces are important in
determining the transmission properties across interfaces. The extended formulation makes it
possible to form effectively complementary systems only by tuning transmission properties at
interfaces.

Finally, we discussed the complementary media of the graphitic lattice and designed the
interface structures forming complementary systems. A discussion using an effective-mass
equation suggested two types of interface that form complementary systems. One is the
interfaces that interchange the A and B sublattices of the graphitic lattice while keeping the
waves at points K and K′ in the Brillouin zone. The other is those having reverse properties.
We designed the atomic structures of the interfaces corresponding to these cases and proved
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the complementarity of the interfaces at the Fermi energy using a tight-binding model. The
interfaces have interface states without dispersion at the Fermi energy in the full range of
the Brillouin zone, which is a condition necessary for forming complementary systems. We
simulated the images of an impurity in the graphitic lattice with and without a complementary
region formed with double interfaces, and verified that the interfaces work well as structures
showing complementary properties even when the complementary conditions are not strictly
satisfied.

This paper has presented only theoretically the possibility of complementary media or
systems of electrons. Their realization is left as a difficult problem to be solved in future. Of
course, this paper does not enumerate all the cases and applications of complementary media
and systems. It is quite probable that different types of complementary media and interfaces
forming complementary systems will be found. This paper may provide a clue to finding and
designing new complementary media and interface structures.
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Appendix A

This appendix presents the complementary property of electromagnetic fields in three
dimensions. We define a vector as

F = t (Ex, Ey, Hx, Hy). (A.1)

The Maxwell equations for frequency ω lead to an equation as
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(A.3)

Once F is determined, Ez and Hz are obtained from the equations

∂ Hy

∂x
− ∂ Hx

∂y
= −iωεEz (A.4)

∂ Ey

∂x
− ∂ Ex

∂y
= iωµHz. (A.5)

A finite-difference version of these equations is shown in [27]. It is obvious that matrix operator
K satisfies the property K (x, y, z) = −K (x, y,−z), if ε(x, y, z) = −ε(x, y,−z) and
µ(x, y, z) = −µ(x, y,−z) are given, and the regions with z > 0 and z < 0 are complementary
media to each other.
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Appendix B

When a 2 × 2 matrix K has a form of

K =
(

0 a
b 0

)
, (B.1)

an elementary calculation shows

exp(iK z) =
(

cos(kz) (i/v) sin(kz)
iv sin(kz) cos(kz)

)
(B.2)

for ab > 0, where k = √
ab and v = √

ab/a, and

exp(iK z) =
(

cosh(λz) (i/v) sinh(λz)
−iv sinh(λz) cosh(λz)

)
(B.3)

for ab < 0, where λ = √−ab and v = √−ab/a. The conditions for exp(iK z) = exp(iKczc)

are v = −vc and kz = −kczc for propagating waves, and λz = −λczc for evanescent waves.
These conditions correspond to the conservations of velocity and phase, respectively.

When a = m⊥/h̄ and b = (2/h̄)[E − V − h̄2q2/(2m‖)], the phase conservation for any q
leads to

zc

z
= −

√
m⊥
mc⊥

mc‖
m‖

(B.4)

and

E = V m‖ − Vcmc‖
m‖ − mc‖

. (B.5)

When these conditions are satisfied,

v′

v
= −

√
m⊥m‖

mc⊥mc‖
(B.6)

for m⊥mc⊥ < 0. Therefore the velocity conservation leads to

m⊥m‖ = mc⊥mc‖. (B.7)

Appendix C

The effective-mass equation shown in equation (35) is written as [19]


0 e−iθ γ (−ik̂x′ + k̂y′) 0 0
eiθ γ (ik̂x′ + k̂y′) 0 0 0

0 0 0 eiθγ (−ik̂x′ − k̂y′)

0 0 e−iθ γ (ik̂x′ − k̂y′) 0




×




FK
A

FK
B

FK′
A

FK′
B


 = E




FK
A

FK
B

FK′
A

FK′
B


 (C.1)

where the x ′ and y ′ axes are shown in figure 3. θ is the angle between the xy and x ′y ′ axes. The
equation above is obtained from ik̂x ± k̂y = e±iθ (ik̂x′ ± k̂y′). This result shows that the rotation
of the system is equivalent to the change in the relative phase between envelope functions. If
we assume a plane wave with wavenumber ky′ for the y ′ direction, the effective-mass equation
is written as
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d

dx ′
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−ky′ e−iθ E/γ 0 0
−eiθ E/γ ky′ 0 0

0 0 ky′ eiθ E/γ

0 0 −e−iθ E/γ −ky′







FK
A

FK
B

FK′
A

FK′
B


 . (C.2)

It is clear that there are only two transformations that change the sign of the coefficient matrix
in the right-hand side of the equation. One is the interchange of the A and B sublattices of
two-dimensional graphite with θ = 0 and the other is the interchange of the waves at K and K′
with θ = π/2.

Appendix D

The tight-binding equations for the structure shown in figure 4(a) are given by

Ean = −bn − bn−1 − µbn−1 (D.1)

and

Ebn = −an − an+1 − 1

µ
an+1 (D.2)

where µ = eik with wavenumber k parallel to the interface. The energy E and wavenumber
k are expressed in the units of the transfer energy and the inverse of the lattice constant,
respectively. The solution of these equations for E = 0 is given by

an+1 = − µ

1 + µ
an (D.3)

with bn = 0 or

bn+1 = −(1 + µ)bn (D.4)

with an = 0. When |k| < 2π/3, the former and latter solutions are growing and decaying
waves, respectively. The growing and decaying waves interchange in the other regions of the
Brillouin zone.

The tight-binding equations at the interface give

a′
0 = b0 (D.5)

and

b′
0 = −a0. (D.6)

This means that all decaying waves are changed to growing waves and vice versa in the full
range of the Brillouin zone. Note that the amplitude at the site symmetrical about the interface
line to the site with amplitude a−n is not b′

n but µ−nb′
n. Therefore the complementary condition

including the information of phase is satisfied in the full range of the Brillouin zone for each
sublattice. The only deviation from the complete complementary system is the change in the
relative phase between the A and B sublattices by π in passing through the interface. The differ-
ence in phase by π is compensated in passing through another interface. Therefore a completely
complementary system is formed by inserting two parallel interfaces into a graphitic lattice.

Appendix E

The tight-binding equations for the structure shown in figure 4(b) are given by

Ean = −bn − bn−1 − 1

µ
bn+1 (E.1)
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and

Ebn = −an − µan−1 − an+1 (E.2)

where µ and E are the same as those in appendix D. It is convenient to express these tight-
binding equations in terms of ãn and b̃n defined by an = µ

n
2 ãn and bn = µ

n
2 b̃n . The tight-

binding equations become symmetrical about the interchange of ãn+1 (b̃n+1) and ãn−1 (b̃n−1).
The tight-binding equations at the interface give interface matrices for E = 0 as(

ã′
1

ã′
0

)
=

(
0 1
1 0

) (
ã0

ã−1

)
(E.3)

and (
b̃′

1

b̃′
0

)
=

(
0 −1

−1 0

) (
b̃0

b̃−1

)
. (E.4)

These equations and the symmetrical property of the tight-binding equations in equations (E.1)
and (E.2) lead to ã′

n = ã−n and b̃′
n = −b̃−n. Since the amplitude at the site symmetrical

about the interface line to the site with amplitude a−n is µ−na′
n, the complementary condition

including the information of phase is satisfied in the full range of the Brillouin zone for each
sublattice. In this case also the incompleteness in the conditions for complementary systems is
only the change in the relative phase between the A and B sublattices, and a complementary
system is formed by introducing double interfaces into a graphitic lattice.
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